If it's not what You are looking for type in the equation solver your own equation and let us solve it.
5x^2+8x-23=0
a = 5; b = 8; c = -23;
Δ = b2-4ac
Δ = 82-4·5·(-23)
Δ = 524
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{524}=\sqrt{4*131}=\sqrt{4}*\sqrt{131}=2\sqrt{131}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(8)-2\sqrt{131}}{2*5}=\frac{-8-2\sqrt{131}}{10} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(8)+2\sqrt{131}}{2*5}=\frac{-8+2\sqrt{131}}{10} $
| 6-(5/x+1)=x | | 8÷2=4÷x | | (-2)×3x+17=5 | | 5/6x(-1/3)=3 | | 21x-42=0 | | x+x+7=53 | | 2(3x+3)+28x=55-x | | 27/16÷x=-15/8 | | 4z/9-7=-2 | | 12x-(2x-6)=46 | | 4z9-7=-2 | | 2(4x+3)+19x=41-x | | a/3+4=10 | | z/10+5=1 | | 2(3x+3)+14x=34-x | | 16=4+3(t+2 | | 3(5x+2)+8x=36-x | | x/8+6=-1 | | 2p-1=23 | | z/7+7=5 | | X^2+5x-200=0 | | (x+5)(4x+1)=15 | | 1/2^x+2=4^2x | | Z(3+i)=0 | | 2^(n-1)=1000 | | 9(t-6)+5t=7(2t+4)-13 | | 3x/2-15/24=5x/8 | | -3(3s-4)-12=-3(8s+4)-5 | | 18=k*9*15^2 | | -2(5s-5)-10=-3(6s+6)-5 | | 5x-1/2+2x-3/4=5 | | 75=1/2h(19+31) |